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Koji SEKIGUCHI

Introduction. ここでは局所環の正則性をネター環でない場合に一般化して、ザリ
スキ、広中の特異点解消理論に応用することを目標とする。

§1. 付値環の剰余体
1.1. ここでは環空間の閉埋入 (closed immersion)についてまとめる。

Lemma 1. f : X → Y を連続写像、FX を X 上の環の層とする。
(i) x ∈ X に対して、環準同形

(f∗FX)f(x) −→ FX,x

θx : ∈ ∈

⟨V, g⟩Y,f(x) 7−→ ⟨f−1(V ), g⟩X,x

を考える。ここで V は Y の開集合、f(x) ∈ V , g ∈ (f∗FX)(V ) = FX(f−1(V )) で
ある。このとき X の位相が Y の位相の f による誘導位相であれば、任意の x ∈ X
に対して θx は環同形となる：(f∗FX)f(x) = FX,x.

(ii) f(X) が Y の閉集合ならば、任意の y ∈ Y − f(X) に対して (f∗FX)y = 0 と
なる。

Corollary. i : X ↪→ Y (相対位相)のとき、任意の x ∈ X に対して (i∗FX)x = FX,x

となる。

環空間の射 (f, f ♯) : (X,FX) −→ (Y,FY ) と x ∈ X に対して y = f(x) とおき、
環準同形 f ♯

x : FY,f(x) → FX,x を f ♯
x = θx ◦ f ♯

y により定める。

Lemma 2. 環空間の射 (f, f ♯) : (X,FX) −→ (Y,FY ) が次の２条件を満たすと仮
定する：

(1) X の位相は Y の位相の f による誘導位相

(2) f(X) は Y の閉集合

このとき次の３条件は同値：

(3) 任意の x ∈ X に対して f ♯
x : FY,f(x) → FX,x は全射

(4) 任意の y ∈ Y に対して f ♯
y : FY,y → (f∗FX)y は全射

(4′) 層の射 f ♯ : FY → f∗FX は全射

環空間の射 (f, f ♯) : (X,FX) −→ (Y,FY ) は、条件 (1), (2), (3) を満たし f が単
射であるとき、閉埋入 (closed immersion)であるといわれる。

Remark. ここで用語は Hartshorne, Algebraic Geometry, p.85 および飯高、代数
幾何学、p.30 に従った。しかしこれは、飯高、代数幾何学、p.30, 注意 1にもある通
り、微分多様体の用語 (数学辞典)と矛盾する。そこで本当は「(1), (2), (3) を満たす
(f, f ♯) を closed immersionと呼び、さらに f が単射であるとき closed imbeddingと
呼ぶ」と定義するほうが良い。

Example 1. 環準同形 φ : A → B が全射ならば、局所環空間の射 Spec φ :
Spec B → Spec A は閉埋入である。

1.2. ここでは §1.1 の結果を付値論に応用する。
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まず、付値環のつくる局所環空間の一般論を述べる。

Lemma 3. 体 K とその部分環 A に対して、写像

Zar(K|A) −→ Spec A
ΦK|A : ∈ ∈

R 7−→ A ∩m(R)

を考える。ここで m(R) は局所環 R の唯一の極大イデアルを表す。
(i) ΦK|A は全射、連続かつ閉写像である。
(ii) ΦK|A は局所環空間の射となる。さらに

付随する層の射 Φ ♯
K|A は同形 ⇐⇒ A は K で整閉

ΦK|A は局所環空間の同形 ⇐⇒ A は K を商体とするプリューファー環

が成り立つ。

Corollary. (i) A が K で整閉ならば Spec A は Zar(K|A) の商局所環空間となる。
(ii) A が K を商体とするプリューファー環であれば ΦK|A の逆写像は

Zar(K|A) ←− Spec A

∈ ∈
Ap

7−→ p

により与えられる。従って ΦK|A は順序逆同形となる。

Remark. (i) A ∈ Zar K ならば、A は K を商体とするプリューファー環である
から、ΦK|A : Zar(K|A)→ Spec A は局所環空間の同形かつ順序逆同形となる。

(ii) 体 K とその部分環 A に対して次は同値：
(a) ΦK|A は単射
(a′) ΦK|A は位相同形
(b) A の K における整閉包 B は K を商体とするプリューファー環であり、自然な
写像：Spec B → Spec A は単射

Example 2. 体 k と k 上の不定元 t に対して K = k(t) とおく。
(i) A = k[t2, t3](t2,t3) の K における整閉包は B = k[t](t) である。従って ΦK|A は

単射である。
(ii) A = k[t2 − t, t3 − t2](t2−t,t3−t2) の K における整閉包は B = k[t](t) ∩ k[t](t−1)

である。従って ΦK|A は単射ではない。

Lemma 4. 体 K と A, B ∈ Zar K に対して
(i) A ⊂ B ⇐⇒ m(B) ⊂ m(A) が成り立つ。
(ii) A ⊂ B ならば A/m(B) は B/m(B) を商体、A/m(A) を剰余体、B×/A× を

値群とする付値環である。

Corollary. p ∈ Spec A ならば A/p は付値環となる。

Lemma 5. 付値環 B とその部分環 A0 に対して p0 = A0 ∩m(B) ∈ Spec A0 とお
き、自然な環準同形 φB : B → B/m(B) より定まる写像

Zar(B/m(B)|A0/p0) −→ Zar(QB|A0)
Zar φB : ∈ ∈

R 7−→ φ−1
B (R)

を考える。
(i) (Zar φB)(R) = A とおけば R = A/m(B) となる。
(ii) Zar φB は局所環空間の射となる。
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(iii) Zar φB は閉埋入である。
(iv) 局所環空間における図式：

Zar(B/m(B)|A0/p0) −→ Zar(QB|A0)
↓ ↓

Spec(A0/p0) −→ Spec A0

は可換である。従って Zar φB は A0 上の局所環空間の射となる。

Corollary. Zar(B|A0) = {A ∈ Zar(QB|A0) | A ⊂ B} とおくと Zar(B|A0) =

{B} ⊂ Zar(QB|A0) となる。従って位相同形かつ順序同形：

Zar(B/m(B)|A0/p0) ∼= Zar(B|A0)

∈ ∈

R 7−→ φ−1
B (R)

A/m(B) 7−→ A

が定まる。

次に、射影体のつくる圏 (P. Fields) を定義する。
体 K と K に属さない元 ∞ に対して K∞ = K ∪ {∞} とおき、加法と乗法を

a+∞ =∞+ a =∞ (a ∈ K)

a · ∞ =∞ · a =∞ (a ∈ K×)

∞ ·∞ =∞
により拡張する。このとき K∞ を射影体と呼ぶ。

Remark. ∞+∞, 0 · ∞, ∞ · 0 は定義されない。また減法と除法については
−∞ =∞, 0−1 =∞, ∞−1 = 0

と定めることも可能であるが、これらは後には用いられない。のみならず、例えば
0−1 = ∞ や ∞−1 = 0 は 0 · ∞ = ∞ · 0 = 1 を連想させるので混乱を招く恐れがあ
る。使用しない方が無難であろう。

射影体の間の写像 φ : K∞ → L∞ は、次の３条件：a, b ∈ K∞ に対して

(5) φ(a) + φ(b) が定義されれば a+ b も定義されて φ(a+ b) = φ(a) + φ(b) が成
り立つ

(6) φ(a) ·φ(b) が定義されれば a · b も定義されて φ(a · b) = φ(a) ·φ(b) が成り立つ
(7) φ(1K) = 1L

を満たすとき、射影体の射であるといわれる。

Remark. ここで用語はブルバキ、数学原論、可換代数３、p.82 および河田、代数
曲線論入門、p.45 に従った。

Example 3. 付値環 A に対して K = QA, L = A/m(A) とおく。自然な環準同形
φA : A→ A/m(A) を

a ∈ K∞ −A =⇒ φA(a) =∞
とおくことにより φA : K∞ → L∞ に拡張する。このとき φA は射影体の射となる。

射影体と射影体の射は写像の合成により圏となる。これを (P. Fields) で表す。体
のつくる圏 (Fields) は (P. Fields) の部分圏と考えられる。さらに、環 A0 に対して
A0 下の射影体のつくる圏 (A0-P. Fields) も定義される。

Lemma 6. 環 A0 に対して
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(i) 反変関手 ZarA0 : (A0-P. Fields)→ (L.R.S./A0) が定まる。
(ii) ZarA0 は fully faithful である。

Example 4. 環 A0 下の射影体の射 φ : K∞ → L∞ が全射ならば、A0 上の局所環
空間の射 ZarA0φ : ZarA0L∞ → ZarA0K∞ は閉埋入である。

Question 1. 体 K とその部分環 A に対して、K を商体とする準プリューファー
環 A と、ΦK|A が単射となるような K, A との関係を考えよ。ここで環 A は、任意
の p ∈ Spec A に対して Ap が準付値環となるとき、準プリューファーであるといわ
れる。

§2. 付値環の値群

2.1. ここでは全順序アーベル群と添加全順序アーベル群についてまとめる。
まず、全順序アーベル群について考える。
集合 G がアーベル群の構造と全順序集合の構造とを持ち、条件：

a, b, c ∈ G, a ≦ b =⇒ a · c ≦ b · c

を満たすとき (G, ·,≦) は全順序アーベル群であるといわれる。単に G と略記するこ
とも多い。順序を保つ群準同形を全順序アーベル群の射という。全順序アーベル群と
全順序アーベル群の射は写像の合成により圏となる。これを (O.A.G.) で表す。G が
全順序アーベル群、H が G の部分群ならば H は全順序アーベル群となる。

Example 1. (R,+), (R+, ·) は全順序アーベル群である。(R×, ·) は全順序アーベル
群ではない。

群演算が加法的に表されている全順序アーベル群を全順序加群と呼ぶ。

Lemma 1. 全順序加群 G は torsion freeである。従って G ̸= 0 ならば G は最大
元、最小元を持たない。よって特に G は無限群となる。

Remark. Lemma 1の逆も成り立つ。即ち

参考定理 (Levi)．加群 G に対して次は同値：
(a) (G,≦) が全順序加群となるような G の順序構造 ≦ が存在する
(b) G は torsion freeである

証明は藤崎、体とガロア理論、p.387, 定理 5.1を参照のこと。

ここで G の順序構造は一意的ではない。

Example 2. 群 G が ≦ で全順序アーベル群となれば、その双対順序 ≦−1 でも全
順序アーベル群となる。このとき、写像：

(G,≦) −→ (G,≦−1)

∈ ∈

a 7−→ a−1

は全順序アーベル群の同形となる。

Example 3. τ1, · · · , τn ∈ Rが Q上線形独立であるとする。このとき (a1, · · · , an),
(b1, · · · , bn) ∈ Zn に対して

(a1, · · · , an) ≦ (b1, · · · , bn) ⇐⇒ (a1 − b1)τ1 + · · ·+ (an − bn)τn ≦ 0

と定義すれば Zn は全順序加群となる。従って Zn (n ≧ 2) は異なる多くの順序構造
により全順序加群となる。
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Lemma 2. 整列集合 I を添数集合とする全順序アーベル群の族 (Gi)i∈I に対して、
群の直積 G =

∏
i∈I

Gi は辞書式順序により全順序アーベル群となる。

Corollary. 全順序アーベル群 G1, G2 に対して、群の直積 G1 ×G2 は辞書式順序
により全順序アーベル群となる。

Remark. (i) 一般に辞書式順序では G1×G2 と G2×G1 とは順序同形にならない。
(ii) G1 ×G2 が圏 (O.A.G.) の直積や直和となるわけではない。
(iii) G1, G2 が共に全順序加群であれば G1 ×G2 を G1 ⊕G2 と書くことも多い。

G を全順序アーベル群とする。a ∈ G に対して |a| = min{a, a−1} ≦ 1 とおく。
∆ ⊂ G は条件：

a ∈ ∆, b ∈ G, |a| ≦ |b| =⇒ b ∈ ∆

を満たすとき線分であるといわれる。全順序アーベル群 G の部分群 H が線分でも
あるとき H を G の孤立部分群といい、その全体を i.Sub(G) で表す。

Remark. (i) ここでは単に線分といったが、より正確には「単位元を中心とする対
称線分」というべきである。実際、∆ が線分であることと次の２条件は同値：
• a ∈ ∆ =⇒ a−1 ∈ ∆
• a ∈ ∆, b ∈ G, a ≦ b ≦ 1 =⇒ b ∈ ∆

(ii) i.Sub(G) は Sub(Groups)(G) の部分集合であるから位相構造を持つ。

Lemma 3. (i) G を全順序アーベル群とする。N ∈ i.Sub(G) ならば G/N は全順
序アーベル群となり、自然な写像：G→ G/N は全順序アーベル群の射となる。

(ii) φ : G → G′ を全順序アーベル群の射とすれば Kerφ ∈ i.Sub(G) であり
φ : G/Kerφ→ Imφ は全順序アーベル群の同形となる。

Lemma 4. G が全順序アーベル群ならば i.Sub(G) は包含関係により全順序集合
となる。

全順序アーベル群 G に対して

rank G = dim i.Sub(G) = card(i.Sub(G)− {G})
とおき G の階数という。明らかに

G = 1 ⇐⇒ rank G = 0

が成り立つ。

全順序加群 Gがアルキメデス的であるとは、条件：
∀a, b ∈ G, a > 0 =⇒ ∃n ∈ N, na ≧ b

を満たすときをいう。また Gが一様アルキメデス的であるとは、条件：
∀b ∈ G, ∃n ∈ N, ∀a ∈ G, a > 0 =⇒ na ≧ b

を満たすときをいう。

Lemma 5. 全順序加群 G に対して
(i) 次は同値：

(a) rank G ≦ 1
(b) G はアルキメデス的
(c) G は R の部分加群と順序加群として同形

(ii) 次も同値：
(b′) G ̸= 0 かつ G は一様アルキメデス的
(c′) G ∼= Z：順序加群として同形
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Corollary. rank G = n が有限であるとき i.Sub(G) = {G0, · · · , Gn}, Gi−1 ⊂ Gi

(1 ≦ i ≦ n) とおけば、任意の i = 1, · · · , n に対して Gi/Gi−1 ↪→ R となる。
全順序加群 Gは、rank G = nが有限であり i.Sub(G) = {G0, · · · , Gn}, Gi−1 ⊂ Gi

(1 ≦ i ≦ n) とおくとき、任意の i = 1, · · · , n に対して Gi/Gi−1
∼= Z となるならば、

離散であるといわれる。

Lemma 6. G を全順序加群、N ∈ i.Sub(G) とするとき、圏 (O.A.G.) において
G/N ∼= Z ならば G ∼= Z⊕N となる。ここで Z⊕N には辞書式順序を導入する。

Lemma 7. 全順序加群 G と n ∈ N に対して
rank G = n かつ G は離散 ⇐⇒ G ∼= Zn (順序加群同形)

が成り立つ。ここで Zn には辞書式順序を導入する。

Corollary. 全順序加群 G が有限生成 Z加群であるとする。
(i) rank G ≦ n かつ G ∼= Zn(群同形)となる n ∈ N が存在する。
(ii) rank G = n ⇐⇒ G ∼= Zn(順序加群同形)となる。ここで Zn の順序は辞書式

順序である。

Example 3′. G = Zn に Example 3 の順序を導入すれば rank G = 1 となる。従っ
て n ≧ 2 ならば G は離散ではない。

Lemma 8. G を全順序加群、H をその部分群とし、mG ⊂ H を満たす m ∈ Z
(m ≧ 1) が存在すると仮定する。このとき

(i) rank H = rank G
(ii) H は離散 ⇐⇒ G は離散

が成り立つ。

Lemma 9. Q の部分加群 G が Z ⊂ G を満たすとする。このとき、素数 p に対し
て gp = sup{n ∈ N | 1

pn ∈ G} ∈ N ∪ {+∞} とおけば

G =

{
a

pe11 · · · p
en
n
| a, ei ∈ Z, 0 ≦ ei ≦ gpi ,

∀i = 1, · · · , n
}

と表せる。

次に、添加全順序アーベル群について述べる。
全順序アーベル群 G と G に属さない元 ∗ に対して G∗ = G ∪ {∗} とおき、群演

算と順序を
a · ∗ = ∗ · a = ∗ (a ∈ G)

∗ · ∗ = ∗
∗ ≦ a (a ∈ G)

により拡張する。このとき G∗ を添加全順序アーベル群と呼ぶ。G∗ は可換半群であ
りかつ全順序集合でもある。

Example 4. 区間 [0,+∞) = (0,+∞) ∪ {0} は添加全順序アーベル群である。
Remark. ここでは G∗ において ∗ を最小元と仮定したが、Example 2 より (双対

順序を考えれば) ∗ を最大元と仮定してもよい。付値論においては G が加群の場合
は ∗ を最大元とし、G が乗法群の場合は ∗ を最小元とすることが多い。

Example 4′. Z ∪ {+∞}, R ∪ {+∞} は添加全順序アーベル群である。このとき群
演算を保ち、順序を逆に保つ全単射：R ∪ {+∞} → [0,+∞) が存在する。

2.2. ここでは §2.1 の結果を付値論に応用し、§1.2の内容を発展させる。
まず、付値環の値群の順序構造について考える。
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K を体、A ∈ Zar K とする。α, β ∈ K に対して

α ∼ β ⇐⇒ ∃c ∈ A× s.t., α = βc 即ち αA = βA

と定義すれば ∼ は K の同値関係となる。これに対応する商集合を K/A× で表す。
α ∈ K の属する同値類は αA× であるから K/A× = {αA× | α ∈ K} と書ける。ま
た K/A× は A の単項分数イデアルの全体と考えることもできる。

α, β ∈ K に対して
αA× · βA× = αβA×

αA× ≦ βA× ⇐⇒ ∃c ∈ A s.t., α = βc 即ち αA ⊂ βA

と定義すれば K/A× は 可換半群かつ全順序集合となる。さらに K×/A× が全順序
アーベル群となることおよび

K/A× = K×/A× ∪ {0A×}
が成り立つことから K/A× が添加全順序アーベル群となることが解る。厳密には全
順序アーベル群 K×/A× を A の値群 (value group)と呼ぶのが正しい。

Example 5. 体 K と A ∈ Zar K に対して、写像

K −→ K/A×

vA : ∈ ∈
α 7−→ αA×

を考える。このとき、任意の α, β ∈ K に対して

• vA(α+ β) ≦ max{vA(α), vA(β)}
• vA(αβ) = vA(α)vA(β)
• vA(α) = 0A× ⇐⇒ α = 0
• vA は全射

が成り立つ。vA を A に対応する K の付値と呼ぶ。

Lemma 10. 体 K と A ∈ Zar K に対して、写像：

Zar(K|A) −→ i.Sub(K×/A×)

∈ ∈

B 7−→ B×/A×

は位相同形かつ順序同形となる。従って

dim Zar(K|A) = dim A = rank(K×/A×)

も解る。

Lemma 10 に関連して次が成り立つ。

参考定理. 体 K と A ∈ Zar K に対して
(i) 順序逆同形：

{K の部分 A加群 } ≃ {K×/A×の上界集合 }

∈ ∈

M 7−→ vA(K −M)

K − v−1
A (∆) 7−→ ∆

が定まる。ここで

vA(K −M) = K/A× − vA(M), v−1
A (K/A× −∆) = K − v−1

A (∆)

に注意する。
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(ii) 写像：

{Aのイデアル } −→ {K×/A×の線分 }

∈ ∈

a 7−→ vA(K − a) ∩ vA(K − a)−1

は順序逆同形となる。
(iii) 写像：

Spec A −→ i.Sub(K×/A×)

∈ ∈

p 7−→ A×
p /A

×

は位相同形かつ順序逆同形となる。

証明はブルバキ、数学原論、可換代数３、p.94, 命題 7および藤崎、体とガロア理
論、p.461, 定理 6.21を参照のこと。

Remark. 参考定理 (iii)の写像は (ii)の写像の制限として得られる。また §1, Lemma
3 の ΦK|A と (iii) の写像とを合成して Lemma 10 の写像が得られる。

次に、高次元離散付値環について考える。
付値環 A は、値群 (QA)×/A× が離散な全順序アーベル群であるとき、離散であ

るといわれる。即ち

A は離散 ⇐⇒ (QA)×/A× は離散

Remark. 体は 0次元離散付値環と考える。

Lemma 11. 付値環 A に対して
(i) 次は同値：

(a) A は極大整環
(b) dim A = 1
(c) rank((QA)×/A×) = 1
(c′) 1 ̸= (QA)×/A× ↪→ (0,∞)
(c′′) {0, 1} ≠ QA/A× ↪→ [0,∞)

(ii) 次も同値：
(a) A は体ではないネター環
(a′) A は体ではない単項イデアル環
(b) A は１次元離散
(b′) dim A = 1 かつ m(A) ̸= m(A)2

(b′′) dim A = 1 かつ m(A) は A の単項イデアル
(c) m(A) ̸= 0 かつ A の 0でないイデアルはすべて m(A)e (e ≧ 0) と表せる

(c′) m(A) ̸= 0 かつ
∞∩
e=0

m(A)e = 0

(d) (QA)×/A× ∼= Z

Corollary. 付値環 A に対して

A はネター環 ⇐⇒ A は体または１次元離散

が成り立つ。

Lemma 12. 付値環 A と B ∈ Zar(QA|A) に対して
8



(i) 位相同形かつ順序 (逆)同形より成る図式：

Zar(B|A)

−→

Zar(B/m(B)|A/m(B)) −→ Spec(A/m(B))

←
−

i.Sub(B×/A×)

が存在する。従って dim Zar(B|A) = dim A/m(B) = rank(B×/A×) も解る。
(ii) dim A = dim B + dim A/m(B) が成り立つ。
(iii) A は離散 ⇐⇒ B は離散かつ A/m(B) は離散となる。
(iv) A ̸= B かつ A と B との間に環は存在しない

⇐⇒ dim A/m(B) = 1
⇐⇒ rank(B×/A×) = 1
⇐⇒ 1 ̸= B×/A× ↪→ (0,∞)

(v) A/m(B) は１次元離散
⇐⇒ dim A/m(B) = 1 かつ m(A) ̸= m(A)2

⇐⇒ m(B) ̸= m(A) かつ m(B) より大きい A のイデアルはすべて m(A)e (e ≧ 0) と
表せる

⇐⇒ m(B) ̸= m(A) かつ m(B) =

∞∩
e=0

m(A)e

⇐⇒ B×/A× ∼= Z

Corollary. n次元付値環 A に対して Zar(QA|A) = {A0, A1, · · · , An} とおく。た
だし Ai−1 ⊂ Ai (i = 1, · · · , n). このとき次は同値：
(a) A は離散
(a′) 任意の i = 1, · · · , n に対して Ai−1/m(Ai) はネター環
(a′′) 任意の i = 1, · · · , n に対して m(Ai−1) ̸= m(Ai−1)

2

(a′′′) A と異なる A のイデアルはすべて pe (e ≧ 1, p ∈ Spec A) と表せる

(a′′′′) 任意の i = 1, · · · , n に対して m(Ai) =
∞∩
e=0

m(Ai−1)
e

(b) 任意の i = 1, · · · , n に対して A×
i /A

×
i−1
∼= Z

(c) (QA)×/A× ∼= Zn (全順序アーベル群として同形)：ここで Zn には辞書式順序を
導入する

Question 2. 無限次元離散付値環を定式化せよ。
ここでは離散付値環はすべて有限次元である。しかし Sekiguchi, Linear topologies

on a field and completions of valuation rings, §4, Examples 5, 6, 7 では無限次元離
散と呼ぶにふさわしい付値環を扱った。これらも含めて統一した議論をしたい。
例えば付値環 A の値群が自由 Z 加群で辞書式順序を持つとき、A を離散と呼ぶ

のはどうか？

§3. 付値位相と完備化

3.1. ここでは付値位相について述べる。
体 K と A ∈ Zar K に対して、集合系

ΣA = {am(A) | a ∈ A, a ̸= 0}

を 0の基本近傍系とする K の位相が存在する。これを K の A 位相と呼ぶ。A を固
定して議論するときは単に付値位相と呼ぶ。
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Example 1. 体 K と A ∈ Zar K に対して
(i) K は A 位相で分離的位相体となる。
(ii) A の分離的イデアル位相は離散位相または付値位相に一致する。
(iii) A = K ⇐⇒ K の A 位相は離散

⇐⇒ A 位相は Σ1
A = {aA | a ∈ A, a ̸= 0} の定める位相とは異なる。

(iv) A 位相は m(A) 進位相より強い。
(iv′) A はネター環 ⇐⇒ A 位相は m(A) 進位相と一致する。
(v) K の A 位相は距離づけ可能

⇐⇒ K の A 位相は第一可算公理を満たす
⇐⇒ K×/A× は下に有界でない可算部分集合を持つ。

Lemma 1. K を体、A0 を K の部分環とする。A, B ∈ Zar(K|A0) に対して

A ∼ B ⇐⇒ K の A 位相は B 位相と一致する

と定義すれば ∼ は Zar(K|A0) の同値関係となる。
(i) A, B ∈ Zar(K|A0) に対して A ∨ B = A[B] = B[A] ∈ Zar(K|A0) とおけば

Zar(K|A ∨B) = Zar(K|A) ∩ Zar(K|B) および

A ∼ B ⇐⇒ A ∨B ̸= K または A = B = K

が成り立つ。
(ii) dim Zar(K|A0) <∞ ならば、対応する同値類分割は

Zar(K|A0) = {K} ∪
∪

A∈Zar(K|A0)
dimA=1

{A}

により与えられる。
(ii′) A0 ∈ Zar K ならば、対応する同値類分割は

Zar(K|A0) = {K} ∪ (Zar(K|A0)− {K})

により与えられる。

3.2. ここでは完備化について述べる。
付値環 A に対して、A 位相に関する完備化

Â = proj. lim A/am(A) (a ∈ A− {0})

を考える。A ∼= Â が成り立つとき A は完備であるといわれる。

Lemma 2. 付値環 A に対して
(i) Â は完備付値環である。
(ii) Â の剰余体と値群は A の剰余体と値群に一致する。従って dim A = dim Â

および「A は離散 ⇐⇒ Â は離散」が成り立つ。
(iii) A ≺ Â かつ A = QA ∩ Â が成り立つ。
(iv) QA の A 位相が距離づけ可能ならば、Â は A の、QÂ は QA の距離空間と

しての完備化となる。

Lemma 3. A を付値環とする。
(i) 局所環空間の射：

Zar(QÂ|Â) −→ Zar(QA|A)

∈ ∈

R 7−→ QA ∩R
10



は位相同形かつ順序同形である。さらにその逆写像は、B ̸= QA に対しては

B̂ 7−→ B

により与えられる。
(ii) QÂ の部分体 k に対して A = k ⊕m(A) ⇐⇒ k ⊂ QA, Â = k ⊕m(Â) が成り

立つ。
(iii) 完全列 1 → A× → (QA)× → (QA)×/A× → 1 が split すれば 1 → Â× →

(QÂ)× → (QÂ)×/Â× → 1 も split する。

Corollary. K を体、A0 を K の部分環とすれば、A, B ∈ Zar(K|A0) に対して

A ∼ B =⇒ QÂ = QB̂

が成り立つ。ここで ∼ は Lemma 1 で定義された Zar(K|A0) の同値関係である。

環 A と全順序加群 Γ に対して、集合

A((Γ)) = {x ∈ AΓ | {γ ∈ Γ | x(γ) ̸= 0}は Γ の整列部分集合 }

は直積 AΓ の部分 A 加群となる。x, y ∈ A((Γ)) に対して xy ∈ A((Γ)) を

Γ −→ A
xy : ∈ ∈

γ 7−→
∑
α∈Γ

x(α)y(γ − α)

により定義することができる。このとき A((Γ)) はこの乗法で環となる (ブルバキ、数
学原論、可換代数３、p.155, 第６章、§3, 演習問題 2) を参照のこと)。また

A[[Γ]] = {x ∈ A((Γ)) | x(γ) ̸= 0 =⇒ γ ≧ 0},

A[Γ] = {x ∈ A[[Γ]] | {γ ∈ Γ | x(γ) ̸= 0}は Γ の有限部分集合 }
は A((Γ)) の部分環となる。さらに n = {x ∈ A[Γ] | x(0) = 0} は A[Γ] のイデアルで
A[Γ] = A⊕ n が成り立つ。

A が整環ならば A((Γ)), A[[Γ]], A[Γ] はすべて整環となる。A[Γ] の商体を A(Γ) で
表す。n は A[Γ] の素イデアルとなるから

R(A,Γ) = A[Γ]n

は局所整環となる。
Aを環、Γを全順序加群とする。α ∈ Γに対して tα ∈ A((Γ))を tα : γ 7−→ tα(γ) =

δα,γ により定めれば、任意の x ∈ A((Γ)) に対して (tαx)(γ) = x(γ − α) が成り立つ。

Example 2. k を体、Γ = Zn (辞書式順序) とする。t1 = t(1,0,··· ,0), · · · , tn =
t(0,··· ,0,1) ∈ k((Γ)) とおけば

(1) k((Γ)) = k((tn)) · · · ((t1))

(2) k[[Γ]] = k ⊕
n⊕

i=1

tik((tn)) · · · ((ti+1))[[ti]]

(3) k[Γ] = t1k[tn, t
−1
n , · · · , t2, t−1

2 ][t1]⊕ · · · ⊕ tn−1k[tn, t
−1
n ][tn−1]⊕ k[tn]

(4) k(Γ) = k(tn, · · · , t1)

(5) R(k,Γ) = k ⊕
n⊕

i=1

tik(tn, · · · , ti+1)[ti](ti)
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(6) R̂(k,Γ) = k ⊕ t1k(tn, · · · , t2)[[t1]]⊕
n⊕

i=2

tik(tn, · · · , ti+1)[ti](ti)

と書ける。従って n ≧ 2 ならば R̂(k,Γ) ̸= k[[Γ]] となる。

Example 3. k を体、Γ を全順序加群とする。rank Γ = 1 ならば

R̂(k,Γ) = {
∞∑
i=0

citγi | ci ∈ k, γi ∈ Γ, 0 = γ0 < γ1 < γ2 < · · · , lim
i→∞

γi = +∞}

と書ける。従って Γ が離散でなければ R̂(k,Γ) ̸= k[[Γ]] となる。

Question 3. (i) A 位相が距離づけ不可能である付値環 A は存在するか？
(ii) 付値環 A の trivial extension A[t]m(A)[t] の完備化を具体的に書き表せ。
(iii) 体 k と全順序加群 Γ に対して、k[[Γ]] は k((Γ)) を商体とする付値環であるこ

とを示せ。

§4. 関手 gr : (L.Rings)→ (Gr.Rings)

4.1. ここでは関手 gr : (L.Rings)→ (Gr.Rings) を定義し、その基本的性質をまと
める。さらに正則局所環について論ずる。
まず、局所環のつくる圏 (L.Rings) と次数環のつくる圏 (Gr.Rings) を定義する。
局所環の間の環準同形 φ : A → B は φ(m(A)) ⊂ m(B) を満たすとき局所的であ

るといわれる。この条件は φ−1(m(B)) = m(A) と同値である。局所環と局所的環準
同形のつくる圏を (L.Rings) で表す。

環 A と A の部分加群の族 (Ai)
∞
i=0 で A =

∞⊕
i=0

Ai かつ AiAj ⊂ Ai+j を満たすも

のの対 (A, (Ai)
∞
i=0) を次数環という。単に A と略記することも多い。次数環の間の

環準同形 φ : A→ B は任意の i ≧ 0 に対して φ(Ai) ⊂ Bi を満たすとき次数環の準
同形であるといわれる。次数環と次数環の準同形のつくる圏を (Gr.Rings) で表す。
次に、関手 gr : (L.Rings)→ (Gr.Rings) を定義する。
局所環 A に対して

grA =

∞⊕
i=0

m(A)i/m(A)i+1

とおく。これは (grA)i = m(A)i/m(A)i+1 (i ≧ 0) と思うことにより次数環となる。
局所環の射 φ : A → B は自然に次数環の射 grφ : grA → grB をひきおこすから、
共変関手 gr : (L.Rings)→ (Gr.Rings) が定まる。

Remark. m(A) = m(A)2 ならば grA = A/m(A) が成り立つ。従って A が体なら
ば grA = A となる。

Lemma 1. 局所環の射 φ : A→ B に対して次は同値：
(a) 任意の i ≧ 1 に対して φ−1(m(B)i) = m(A)i となる
(b) 次数環の射 grφ : grA→ grB は単射

A を整環とする。x ∈ QA は、条件
∃c ∈ A, s.t., c ̸= 0, cA[x] ⊂ A

を満たすとき、A 上概整 (almost integral)であるといわれる。A 上概整であるすべ
ての x ∈ QA が x ∈ A となるとき A は完整閉 (completely integrally closed)であ
るといわれる。

Lemma 2. A を整環とする。
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(i) x ∈ QA が A 上整ならば A 上概整となる。
(ii) A がネター環ならば逆も成り立つ。

Corollary. (i) A が完整閉ならば A は整閉となる。
(ii) A がネター環ならば逆も成り立つ。

Lemma 3. A を局所環とする。

(i) grA が整環であり
∞∩
i=1

m(A)i = 0 を満たすならば A も整環となる。

(ii) grA が完整閉整環であり A の任意のイデアル a に対して
∞∩
i=1

(a+m(A)i) = a

が成り立てば A は整閉整環となる。

局所環 A に対して
δ(A) = dimA/m(A)m(A)/m(A)2

とおく。

Lemma 4. ネター局所環 A に対して
(i) dim A ≦ δ(A) <∞ が成り立つ。
(ii) 次は同値：

(a) dim A = δ(A)
(b) grA は A/m(A) 上 dim A 変数の多項式環
(b′) grA は A/m(A) 上の多項式環
(c) m(A) は dim A 個の元で生成される

dim A = δ(A) を満たすネター局所環 A を正則局所環と呼ぶ。

Remark. 正則局所環の幾何学的意義については Hartshorne, Algebraic Geometry,
p.32, Theorem 5.1 を参照のこと。

Lemma 4 を後に使う形にいいかえておこう：

Lemma 4′. ネター局所環 A に対して
(i) dim grA ≦ δ(A) が成り立つ。
(ii) A は正則局所環 ⇐⇒ grA は整環かつ tr.degA/m(A)Q(grA) = δ(A)

Lemma 5. A を正則局所環とする。
(i) A は整閉整環となる。
(ii) dim A ≦ 1 ⇐⇒ A 位相は m(A) 進位相と一致する。

Remark. より強く次が成り立つ：

参考定理. 正則局所環は素元分解環である。

証明は松村、可換環論、p.197, 定理 20.3 を参照のこと。

4.2. ここでは付値環 A に対して grA および δ(A) を考える。

Lemma 6. A を付値環、p ∈ Spec A, p ̸= m(A) とする。
(i) 任意の i ≧ 0 に対して p ⊂ m(A)i が成り立つ。
(ii) 次数環の同形 grA ∼= gr(A/p) を得る。従って δ(A) = δ(A/p) も解る。

Lemma 7. A を付値環とする。
(i) m(A) は A の 0でない単項イデアル

⇐⇒ A は体ではなく、任意の p ∈ Spec A に対して m(A)/p は A/p の単項イデアル
⇐⇒ p ̸= m(A) かつ m(A)/p は A/p の単項イデアルとなる p ∈ Spec A が存在する
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(ii) 次も同値：
(a) A は１次元離散
(b) dim A = 1 かつ grA は A/m(A) 上の１変数多項式環
(c) δ(A) = dim A = 1

Remark. Lemma 7, (ii) については §2, Lemma 11, (ii) も参照のこと。

Lemma 8. 有限次元付値環 A に対して
(i) δ(A) ≦ dim A が成り立つ。
(ii) δ(A) = dim A ⇐⇒ A はネター環
(iii) δ(A) = 0 または δ(A) = 1 であり grA は A/m(A) 上 δ(A) 変数の多項式環で

ある。
(iv) 次は同値：

(a) δ(A) = 1
(b) grA は A/m(A) 上の１変数多項式環
(c) m(A) は A の 0でない単項イデアル
(d) m(A) ̸= m(A)2

(e) A/p が１次元離散となる p ∈ Spec A が存在する

Corollary. 有限次元付値環 A に対して p =
∞∩
i=0

m(A)i とおけば

(i) p ∈ Spec A となる。
(ii) p /∈ m.Spec A ⇐⇒ δ(A) = 1 ⇐⇒ A/p は１次元離散

以上によりネター局所環と有限次元付値環との違いが明らかとなった。次の結果も
これらの違いを示している。

参考定理. (i) A がネター局所環ならば dim A = dim grA が成り立つ。
(ii) A が有限次元付値環ならば δ(A) = dim grA が成り立つ。

証明. (i) は松村、可換環論、p.124, 定理 13.9 を参照のこと。
(ii) は Lemma 8, (iii) より明らか。

参考定理. 付値環 A に対して

Aは完整閉 ⇐⇒ dim A ≦ 1

が成り立つ。

証明はブルバキ、数学原論、可換代数３、p.102, 命題９を参照のこと。

Question 4. 付値環 A に対して grA = grÂ はどうか？
もしこれが成り立たないのなら grA の定義を修正して考えよ。grA は m(A) 進位

相に適合する。Â は A 位相に関する完備化である。これらの相性が悪くてもいたし
かたがない。そこで A 位相に適合する関手を考えよ。例えば：
第一可算公理を満たす付値環 A の 0 の可算基本近傍系 Σ = {ai | i ≧ 0} に対して

grΣA =
⊕∞

i=0 ai/ai+1 とおき、これを代用物にできないか考えよ。より直接

ΣA = {am(A) | a ∈ A, a ̸= 0}
を用いることも考えよ。ただし grA =

⊕
a∈A−{0} aA/am(A) はダメ。

§5. 付値論的正則性
5.1. ここでは付値環による強い支配について述べる。
A, B を局所環とする。B が A を支配するとは A ⊂ B かつ i : A ↪→ B が局所環

の射となるときをいう。このとき A ≺ B と書く。
14



B が A を強く支配するとは A ⊂ B かつ i : A ↪→ B が局所環の射となり、さらに
gri が単射となるときをいう。このとき A ≺m B と書く。
§4, Lemma 1より次が解る：A, B が局所環で A ⊂ B とするとき

A ≺ B ⇐⇒ m(A) = A ∩m(B)⇐⇒ A/m(A) ↪→ B/m(B)

A ≺m B ⇐⇒ m(A)i = A ∩m(B)i (i ≧ 1)⇐⇒ grA ↪→ grB

Example 1. A をデデキント環、K = QA, L を K の有限次拡大、B を A の L
における整閉包とする。

(i) 任意の q ∈ Spec B, p ∈ Spec A に対して p = A∩ q⇐⇒ Ap ≺ Bq が成り立つ。
(ii) (i)において q が p 上不分岐 ⇐⇒ Ap ≺m Bq が成り立つ。

従ってこの場合、強い支配は不分岐支配ともいい得る。

Example 2. k を体、t を k 上の不定元とする。
(i) A = k[t2, t3](t2,t3), B = k[t](t) とおけば A ≺ B であるが A ≺m B ではない。
(ii) A = k[t2−1, t3−t](t2−1,t3−t), B = k[t](t−1) とおけば A ≺ B であるが A ≺m B

ではない。B = k[t](t+1) でも同様である。

Lemma 1. 局所整環 A が
∞∩
i=1

m(A)i = 0 を満たすとする。

(i) 有限次元付値環 R が A ≺m R かつ QA = QR を満たせば R はネター環と
なる。

(ii) A ≺m R かつ QA = QR を満たす有限次元付値環 R は高々一意的である。

Lemma 2. 局所環 A に対して
(i) 次は同値：

(a) grA は整環かつ
∞∩
i=1

m(A)i = 0

(b) A は整環かつ A ≺m R, dim R <∞ を満たす R ∈ Zar(QA|A) が存在する
(b′) A は整環かつ A ≺m R を満たすネター環 R ∈ Zar(QA|A) が唯一つ存在する

(ii) (b′)が成り立つとき、A は体ではない ⇐⇒ dim R = 1 となる。

Lemma 3. A を正則局所環、d = dim A とする。
(i) d ≦ 1 ならば A はネター付値環である。

(ii) d ≧ 2 のとき m(A) = Ax1 + · · ·+ Axd, B = A[
x2

x1
, · · · , xd

x1
], p = Bx1 とおけ

ば p ∈ Spec B となる。さらに R = Bp とおけば R ∈ Zar(QA|A) かつ R はネター
環で A ≺m R を満たす。従って R/m(R) は A/m(A) 上の d − 1 変数有理函数体と
なることおよび Q(grA) = Q(grR) が解る。

5.2. ここでは局所環の付値論的正則性の定義および正則局所環との関係を述べる。
局所環 A は、整でありかつ条件：
• A ≺m R
• tr.degA/m(A)R/m(R) ≧ δ(A)− 1
• Q(grR) は Q(grA) の代数拡大
• dim R <∞

を満たす R ∈ Zar(QA|A) が存在するとき、付値論的正則であるといわれる。
Example 3. 付値環 A に対して

Aは付値論的正則 ⇐⇒ dim A <∞
が成り立つ。
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Theorem 1. 局所環 A に対して

A は正則 ⇐⇒ A はネターかつ付値論的正則

が成り立つ。

Question 5. Theorem 1 が成り立てば、付値論的正則性の定義は上の通りでなく
ても良い。よりよい定義を考えよ。例えば、すべての付値環が付値論的正則となるよ
うな定義を考えよ。逆に、例えば：「局所環 A は、整でありかつ条件：

• A ≺m R
• tr.degA/m(A)R/m(R) = δ(A)− 1
• Q(grR) は Q(grA) の代数拡大
• dim R <∞

を満たす R ∈ Zar(QA|A) が存在するときまたは A が体であるとき、付値論的正則
である」と定義する。この定義ならば Example 3は次のように修正する：

Example 3′. 付値環 A に対して

A は付値論的正則 ⇐⇒ dim A <∞, m(A) は A の単項イデアル

が成り立つ。

§6. 代数関数体の付値環
6.1. ここでは代数関数体 K/k の付値環を分類するための準備を行う。

Lemma 1. K/k を１変数有理関数体とする。
(i) k の拡大体 k′ に対して次は同値：

(a) k′ ∼= R/m(R) となる R ∈ Zar(K|k) が存在する
(b) k′ は k の単拡大

(ii) 全順序加群 Γ に対して次は同値：
(c) Γ ∼= K×/R× (群同形、順序逆同形)となる R ∈ Zar(K|k) が存在する
(d) Γ ↪→ Z とみなせる

Lemma 2. K/k を２変数有理関数体とする。
(i) k の拡大体 k′ に対して次は同値：

(a) k′ ∼= R/m(R) となる R ∈ Zar(K|k) が存在する
(b) k′ は k の ???

(ii) 全順序加群 Γ に対して次は同値：
(c) Γ ∼= K×/R× (群同形、順序逆同形)となる R ∈ Zar(K|k) が存在する
(d) Γ ↪→ Z2 または Γ ↪→ Q とみなせる

6.2. ここでは代数関数体 K/k の付値環を分類し Zar(K|k) を決定する。
Question 6. Lemma 1, Lemma 2 を任意の代数関数体 K/k に一般化せよ。

§7. ザリスキの特異点解消
7.1. ここでは代数関数体の特異点解消のための準備を行う。

Lemma 1. (Serre) A が正則局所環ならば、任意の p ∈ Spec A に対して Ap も正
則局所環となる。

証明は松村、可換環論、p.190, 定理 19.3 を参照のこと。

局所環空間 (X,OX) に対して

Reg(X,OX) = {x ∈ X | OX,x は正則局所環 }
16



とおく。単に Reg X と略記することも多い。Reg X = X が成り立つとき、局所環
空間 X は正則であるといわれる。

Example 1. 環 A に対して

Spec A は正則 ⇐⇒ m.Spec A は正則

が成り立つ。

このとき環 A は正則であるといわれる。

Remark. 正則局所環とは正則な局所環のことである。

Example 2. 体上有限型なスキーム X が Xcl ⊂ Reg X を満たせば正則である。

Lemma 2. 体上有限型な環 A に対して Reg(Spec A) は Spec A の開集合となる。

証明は松村、可換環論、定理 30.4 および定理 30.5 の系 (p.290)を参照のこと。

Corollary. 体上有限型なスキーム X に対して Reg X は X の開集合となる。

7.2. ここではザリスキに従って代数関数体の特異点解消を行う。
代数関数体 K/k に対して、K を関数体とする k 上分離有限型な整スキーム X を

K/k のモデルという。任意の代数関数体に対してモデルは存在する。以下では「で
きるだけ良いモデルをみつけること」を目標とする。

Example 3. １変数代数関数体 K/k に対して、Zar(K|k) は K/k の正則射影モデ
ルである。

Theorem 1. 代数関数体 K/k に対して次の (a), (b), (c) は同値：
(a) K/k は正則射影モデルを持つ。
(b) Zar(K|k) は次の２条件を満たす：

(z.1) 任意の R ∈ Zar(K|k) に対して K を商体とする k 上有限型な整環 A で
A ⊂ R かつ ΦK|A(R) ∈ Reg(Spec A) となるものが存在する

(z.2) 任意の M ⊂ Zar(K|k) に対して M ⊂ Φ −1
X1

(Reg X1) ∪Φ −1
X2

(Reg X2) を満
たす K/k の射影モデル X1, X2 が存在すれば M ⊂ Φ −1

X0
(Reg X0) を満たす K/k

の射影モデル X0 が存在する
(c) Zar(K|k)cl は次の２条件を満たす：

(z.1)cl 任意の R ∈ Zar(K|k)cl に対して K を商体とする k 上有限型な整環 A で
A ⊂ R かつ ΦK|A(R) ∈ Reg(Spec A) となるものが存在する

(z.2)cl 任意の M ⊂ Zar(K|k)cl に対して M ⊂ Φ −1
X1

(Reg X1)∪Φ −1
X2

(Reg X2) を
満たす K/k の射影モデル X1, X2 が存在すれば M ⊂ Φ −1

X0
(Reg X0) を満たす K/k

の射影モデル X0 が存在する

Proof. (a) ⇒ (b), (b) ⇒ (c) は明らか。(c) ⇒ (a) を示す。まず (z.1)cl より

Zar(K|k)cl ⊂
∪
X

Φ −1
X (Reg X)

となることに注意する。ここで X は K/k の射影モデル (の同形類)を走る。従って
Lemma 2 の Corollary および Zar(K|k)cl のコンパクト性より

Zar(K|k)cl ⊂
r∪

i=1

Φ −1
Xi

(Reg Xi)
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を満たす K/k の射影モデル X1, · · · , Xr が存在する。ここで r = 1 ならば X1 は正
則射影モデルとなる。r = 2 ならば (z.2)cl より r = 1 に帰着する。r ≧ 3 のとき

M = {R ∈ Zar(K|k)cl | R /∈
r−2∪
i=1

Φ −1
Xi

(Reg Xi)}

とおけば M ⊂ Φ −1
Xr−1

(Reg Xr−1) ∪ Φ −1
Xr

(Reg Xr) となる。よって (z.2)cl より

Zar(K|k)cl は r − 1 個の Φ −1
X (Reg X) で覆われる。あとはこれを r − 2 回繰り返

せばよい。

Theorem 2. K/k を代数関数体とする。このとき
(i) ch(k) = 0 ならば (z.1)cl が成り立つ。
(ii) ch(k) = 0, tr.degkK ≦ 3 ならば (z.2)cl が成り立つ。

Proof.

Corollary. ch(k) = 0, tr.degkK ≦ 3 ならば、代数関数体 K/k は正則射影モデル
を持つ。

7.3. ここではザリスキの特異点解消理論を改良する。

Theorem 1′. 代数関数体 K/k に対して、Zar(K|k) のコンパクト部分集合 N で
次の３条件：

(z.1)N 任意の R ∈ N に対して K を商体とする k 上有限型な整環 A で A ⊂ R
かつ ΦK|A(R) ∈ Reg(Spec A) となるものが存在する

(z.2)N 任意の M ⊂ N に対して M ⊂ Φ −1
X1

(Reg X1) ∪ Φ −1
X2

(Reg X2) を満たす
K/k の射影モデル X1, X2 が存在すれば M ⊂ Φ −1

X0
(Reg X0) を満たす K/k の射影

モデル X0 が存在する

(z.3)N K/k の任意の射影モデル X に対して Xcl ⊂ ΦX(N) となる

を満たすものが存在すれば K/k は正則射影モデルを持つ。

Example 4. 代数関数体 K/k に対して

N = {R ∈ Zar(K|k) | tr.degkR/m(R) ≧ tr.degkK − 1}
とおく。このとき N は (z.1)N および (z.3)N を満たす。

Question 7. (i) Example 4 の N はコンパクトか？ また (z.2)N をみたすか？ も
しこれらが成り立てば、代数関数体 K/k は正則射影モデルを持つ。もしこれらが不
成立であれば、別の N を考えよ。

(ii) 代数関数体 K/k は常に正規固有モデルを持つか？ これは Question 9, (i) と
も関連する。

(iii) 局所環空間 (X,OX) に対して

v.Reg(X,OX) = {x ∈ X | OX,x は付値論的正則 }
とおき、この性質を探れ。

§8. 広中の特異点解消
ここでは、川又、代数多様体論、第２章に従い、特異点解消理論を学ぶ。

Question 8. (i) 広中の特異点解消理論のどこに定義体が代数的閉体であることが
本質的に用いられるのか調べよ。

(ii) 広中の特異点解消理論を任意標数に拡張せよ。
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§9. 永田の定理の別証明
ここでは、永田、宮西、丸山、抽象代数幾何学、第２章に従い、ネター整スキーム

上分離有限型な整スキームの固有整スキームへの埋め込みに関する永田の定理に別
証明をつけることを目標とする。
まず目標の定理を明確にすることから始めよう。

Theorem(Nagata). ネター整スキーム S 上分離有限型な整スキーム X に対して、
S 上固有な整スキーム X ′ が存在して、X は X ′ の開部分スキームと S 上同形に
なる。

次に上記定理をいいかえる。永田、宮西、丸山、抽象代数幾何学、p.164, (ロ)を
みると S はアフィンとしてよいことが解る。従って次がいえれば良い：

Theorem 1. A をネター整環、X を A 上分離有限型な整スキームとする。このと
き A 上固有な整スキーム X ′ が存在して、X は X ′ の開部分スキームと A 上同形
になる。

以下では Theorem 1 の証明を目標とする。

9.1. ここでは Theorem 1 の証明の準備をする。
体 K とその部分環 A に対して、K を関数体とする A 上分離有限型な整スキーム

X を K/A のモデルという。

Lemma 0. 体 K とその部分環 A に対して

K/A のモデルが存在する ⇐⇒ K は QA の有限生成拡大

が成り立つ。

K/A のモデル X に対して

Zar(X) = {R ∈ Zar(K|A) | ∃x ∈ X s.t., OX,x ≺ R}

とおき X のザリスキ・リーマン空間と呼ぶ。

Lemma 1. Aが体 K のネター部分環であれば、K/Aのモデル X に対して Zar(X)
は Zar(K|A) の開集合であり、局所環空間の射 ΦX : Zar(X) −→ X が定義される。
さらに

X は A上固有⇐⇒ Zar(X) = Zar(K|A)
が成り立つ。

Proof. Zar(X) が Zar(K|A) の開集合であること：任意の R ∈ Zar(X) に対し
て OX,x ≺ R を満たす x ∈ X が存在する。x を含む X のアフィン開集合 V をとれ
ば R ∈ Zar(K|OX(V )) ⊂ Zar(X) が成り立つ。ここで OX(V ) が A 上有限型であ
ることに注意すればよい。残りの部分は Sekiguchi, Ringed spaces of valuation rings
and projective limits of schemes, Lemma 13 より解る。

Corollary. K/A のモデル X に対して、有理射

ΦX : Zar(K|A) −→ X

が定義される。このとき dom(ΦX) = Zar(X) が成り立つ。従って K/A の固有モデ
ル X に対して、局所環空間の射

ΦX : Zar(K|A) −→ X

が定義される。
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Lemma 2. 任意の R ∈ Zar(K|A) に対して、K/A のモデル Y で X を開集合と
して含み、Y −X は Y のアフィン開集合に含まれかつ R ∈ Zar(Y ) を満たすもの
が存在する。

Proof. (p.157, Theorem 2.4.8, p.163, ℓ. 17.)

Lemma 3. A を体 K のネター部分環とする。K/A のモデル X1, X2 に対して、
X1−X2 を含むK/Aの射影モデルが存在すれば、K/Aのモデル X0 で X1∩X2 ⊂ X0

かつ Zar(X0) = Zar(X1) ∪ Zar(X2) を満たすものが存在する。

Proof. (p.160, Theorem 2.4.10.)

9.2. ここでは Theorem 1 を証明する。(p.163)

Step 1. 構造射 : X −→ Spec Aは dominantと仮定して良い。従って K = Rat X
とおくとき A ⊂ K かつ X は K/A のモデルとしてよい。

Proof. 構造射を f : X −→ Spec A と書く。f(X) は Spec A の既約閉集合である
から V (p) = f(X) となる p ∈ Spec A が存在する。このとき A を A/p におきかえ
ればよい。

Step 2. Zar(K|A) =
∪
Y

Zar(Y ) が成り立つ。ここで Y は X を開集合として含

み、Y −X は Y のアフィン開集合に含まれる K/A のモデルを走る。

Proof. Lemma 2 より明らか。

Step 3. K/AのモデルX1, · · · , Xr で、X を開集合として含み、任意の i (1 ≦ i ≦ r)
に対して Xi −X は Xi のアフィン開集合に含まれ

Zar(K|A) =
r∪

i=1

Zar(Xi)

を満たすものが存在する。

Proof. Step 2 と Zar(K|A) がコンパクトであることより解る。

Step 4. Step 3 で r = 1 ととれる。即ち X ′ = X1 が求めるものである。

Proof. r = 1 ととれることは Lemma 3 より解る。このとき Lemma 1 より X1 は
A 上固有となる。

従って Theorem 1 が証明された。

Corollary. A がネター整環、K が QA の有限生成拡大ならば K/A は固有モデル
を持つ。

Question 9. (i) Theorem 1 で X が正規ならば X ′ も正規ととれるか？ また一般
に固有モデル X の正規化 X ′ は固有となるか？もしこれらのどちらかが成り立てば
K/A は正規固有モデル X ′ を持つ。従って Queution 7, (ii) は肯定的に解決する。

(ii) Theorem 1 で X が正則ならば X ′ も正則ととれるか？もしこれが成り立てば
特異点解消となる。従ってうまくいけば K/A の正則固有モデルの存在が示せる可能
性がある。

§10. 完全体を係数体とする多変数代数関数体の多重種数と小平次元、余接次元
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環準同形 φ : A → B に対して B 加群 ΩB|A および dB|A ∈ DerA(B,ΩB|A) が定
義され、任意の B 加群 M に対して写像

d ∗
B|A :

HomB(ΩB|A,M) −→ DerA(B,M)

∈ ∈

φ 7−→ φ ◦ dB|A

は B 加群の同形となる。ΩB|A をケーラー微分加群といい、上記性質をケーラー微
分加群の普遍性という。
環準同形 φ : A→ B と n ≧ 1 に対して

Ω n
B|A = ΩB|A ∧ · · · ∧ ΩB|A (n個の外積)

とおく。さらに多重指数 m = (m1, · · · ,mn) ∈ Nn に対して

Ωm
A (B) = (Ω 1

B|A)
⊗m1 ⊗ · · · ⊗ (Ω n

B|A)
⊗mn

とおけば、関手 Ωm
A : (A-Rings)→ (Mod.) を得る。

Lemma 1. 環 B とその部分環 A および多重指数 m に対して、写像

s :
Sub(Rings)(B|A) −→ Sub(Mod.)(Ω

m
A (B))

∈ ∈

R 7−→ Im Ωm
A (iR|B)

は連続である。ここで iR|B : R→ B は包含写像を表す。

K を体、A を K の部分環とする。局所環空間 Zar(K|A) の商空間 X および多
重指数 m に対して、Lemma 1 より、写像

smX :
X −→ Sub(Mod.)(Ω

m
A (K))

∈ ∈

x 7−→ Im Ωm
A (ix)

は連続となる。ここで ix : OX,x → K は包含写像を表す。従って、写像 smX により
定義される X 上の intersection sheaf Ωm

X が存在する。

Lemma 2. K を体、A を K の部分環とする。局所環空間 Zar(K|A) の商空間 X
および多重指数 m に対して

(i) Ωm
X は OX 加群層である。

(ii) 任意の x ∈ X に対して Ωm
X,x
∼= (Ωm

A (OX,x))t.f が成り立つ。

X が A 上のスキームであれば、通常の正則微分形式のつくる層が定まる。これを
ΩX/A で表す。これより同様に、多重指数 m に対して Ωm

X/A が定義される。

Lemma 3. k を完全体、X を k 上有限型な既約スキームで dim X = n とすれば

Reg X = {x ∈ X | (ΩX/k)x ∼= (OX,x)
n}

が成り立つ。

Proof. Hartshorne, Algebraic Geometry, p.187, Exercise 8.1, (c) を参照のこと。

Theorem 1. 完全体 k 上有限生成な拡大体 K に対して Z = Zar(K|k), N =
N(K|k), i : N ↪→ Z とおく。

(i) X が K/k の正則固有モデルならば、任意の多重指数 m に対して

Ωm
X/k
∼= Ωm

X = ΦX∗Ω
m
Z = (ΦX |N )∗Ω

m
N

が成り立つ。従って Ωm
X/k(X) は双有理不変である。
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(ii) K/k が十分多くの正則固有モデルを持てば、任意の多重指数 m に対して

Ωm
Z = i∗Ω

m
N

が成り立つ。

Remark. Theorem 1 は固有を射影に変えても成り立つ。

完全体 k 上有限生成な拡大体 K に対して Z = Zar(K|k) と書く。多重指数 m に
対して

gm(K|k) = dimkΩ
m
Z (Z) ∈ N ∪ {+∞}

とおく。gm(K|k) を K/k の m 種数と呼ぶ。このとき Theorem 1 より次が解る。

Theorem 1′. K を完全体 k 上有限生成な拡大体とする。X が K/k の正則固有モ
デルならば、任意の多重指数 m に対して

gm(K|k) = dimkΩ
m
X|k(X) < +∞

が成り立つ。

Corollary. gm(K|k) = +∞ となる多重指数 m が存在すれば K/k は正則固有モデ
ルを持たない。

Question 10. (i) Ωm
Z ̸= i∗Ω

m
N となる K/k, m はあるのか？ また gm(K|k) = +∞

となる K/k, m はあるのか？
(ii) 完全体 k 上有限生成な拡大体 K に対して Z = Zar(K|k) を用いて小平次元、

余接次元を定義せよ。
(iii) Z = Zar(K|A)上の OZ 加群の intersection sheaf F に対して、コホモロジー

群 Hr(Z,F) (r ≧ 0) が定義される。この応用を考えよ。例えば、F に適当な条件を
つけて有限性定理の類似を示せ。

§11. Zar と Loc を用いたモデルの理論
K を体、A を K の部分環とする。K/A の固有モデル X に対して、局所環空間

の射 ΨX ◦ ΦX : Zar(K|A)→ Loc(K|A) を考える。
一般のモデル X に対しても、有理射 ΨX ◦ ΦX : Zar(K|A) → Loc(K|A) が定義

される。即ち
Zar(K|A) −→ Loc(K|A)

↪→ ↑
Zar(X) −→ X

逆に、これらの射：Zar(K|A)→ Loc(K|A) の性質を特徴づけて、K/A のモデル
X を再構成することを考える。

Question 11. これを用いて K/A のモデル X が正規であること、正則であること
を特徴づけよ。
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